// Copyright 2020 Nick White. // Use of this source code is governed by the GPLv3 // license that can be found in the LICENSE file. // analysestats analyses a set of 'best', 'conf', and 'hocr' files // in a directory, outputting results to a .csv file for further // investigation. package main import ( "bufio" "encoding/csv" "encoding/xml" "flag" "fmt" "io/ioutil" "log" "math" "os" "path/filepath" "strconv" "strings" ) const usage = `Usage: analysestats statsdir csvfile analysestats analyses a set of 'best', 'conf', and 'hocr' files in the 'statsdir' directory, outputting results to the 'csvfile' file in CSV format for further investigation. ` // stat represents key stats / metadata for a book type stat struct { mean float64 stddev float64 training string year int } // Bookstats is a map of the stats attached to each book (key is book name) type Bookstats = map[string]*stat type hocrPars struct { Par []struct { Lang string `xml:"lang,attr"` } `xml:"body>div>div>p"` } // getTrainingUsed parses a hOCR file to find the training // file used to create it. func getTrainingUsed(hocrfn string) (string, error) { b, err := ioutil.ReadFile(hocrfn) if err != nil { return "", err } var par hocrPars err = xml.Unmarshal(b, &par) if err != nil { return "", err } if len(par.Par) < 1 { return "", fmt.Errorf("No
tags found") } return par.Par[0].Lang, nil } // getMeanStddevOfBest calculates the mean and standard deviation // of the confidence values of every page in bestfn, as listed in // conffn. func getMeanStddevOfBest(bestfn string, conffn string) (float64, float64, error) { f, err := os.Open(conffn) if err != nil { return 0, 0, fmt.Errorf("Failed to open %s: %v", conffn, err) } defer f.Close() s := bufio.NewScanner(f) // create a map of confs from the conf file var confs map[string]int confs = make(map[string]int) for s.Scan() { line := s.Text() parts := strings.Fields(line) if len(parts) != 2 { continue } c, err := strconv.Atoi(parts[1]) if err != nil { continue } fn := filepath.Base(parts[0]) confs[fn] = c } f, err = os.Open(bestfn) if err != nil { return 0, 0, fmt.Errorf("Failed to open %s: %v", bestfn, err) } defer f.Close() s = bufio.NewScanner(f) var bestConfs []int for s.Scan() { fn := s.Text() c, ok := confs[fn] if !ok { continue } // skip zero confidence pages, as they're likely blank pages if c == 0 { continue } bestConfs = append(bestConfs, c) } var sum int for _, v := range bestConfs { sum += v } mean := float64(sum) / float64(len(bestConfs)) var a, stddev float64 if len(bestConfs) > 1 { for _, v := range bestConfs { a += (float64(v) - mean) * (float64(v) - mean) } variance := a / float64(len(bestConfs)-1) stddev = math.Sqrt(variance) } return mean, stddev, nil } // walker returns a walkfunc that checks for hocr and best files, // and uses them to fill the bookstats map & structure. Note that // the stat file is read when the best file is read, as they need // to be parsed together to get the statistics we're interested // in. func walker(bookstats *Bookstats) filepath.WalkFunc { return func(fpath string, info os.FileInfo, err error) error { if err != nil { return err } if info.IsDir() { return nil } b := filepath.Base(fpath) parts := strings.Split(b, "-") // if no - or name is too short to have a useful prefix, bail if len(parts) < 2 || len(b) < 6 { return nil } prefix := b[0 : len(b)-6] // 6 is length of '-hocr' + 1 ext := parts[len(parts)-1] if ext != "hocr" && ext != "best" { return nil } var year int parts2 := strings.Split(b, "_") if len(parts2) > 2 { // we can ignore an error as a zero year is correct in that case anyway year, _ = strconv.Atoi(parts2[0]) } _, ok := (*bookstats)[prefix] if !ok { (*bookstats)[prefix] = &stat{year: year} } switch ext { case "hocr": training, err := getTrainingUsed(fpath) if err != nil { log.Printf("Warning: failed to get training used from %s: %v\n", fpath, err) return nil } (*bookstats)[prefix].training = training case "best": confpath := strings.Replace(fpath, "-best", "-conf", -1) mean, stddev, err := getMeanStddevOfBest(fpath, confpath) if err != nil { log.Printf("Warning: failed to get mean & standard deviation from %s and %s: %v\n", fpath, confpath, err) return nil } (*bookstats)[prefix].mean = mean (*bookstats)[prefix].stddev = stddev } return nil } } func main() { flag.Usage = func() { fmt.Fprintf(flag.CommandLine.Output(), usage) flag.PrintDefaults() } flag.Parse() if flag.NArg() != 2 { flag.Usage() os.Exit(1) } info, err := os.Stat(flag.Arg(0)) if err != nil || !info.IsDir() { log.Fatalln("Error accessing directory", flag.Arg(0), err) } var bookstats Bookstats bookstats = make(Bookstats) err = filepath.Walk(flag.Arg(0), walker(&bookstats)) if err != nil { log.Fatalln("Failed to walk", flag.Arg(0), err) } f, err := os.Create(flag.Arg(1)) if err != nil { log.Fatalf("Failed to create file %s: %v\n", flag.Arg(1), err) } defer f.Close() csvw := csv.NewWriter(f) csvw.Write([]string{"Name", "Year", "Mean", "Standard Deviation", "Training"}) for name, stats := range bookstats { year := fmt.Sprintf("%d", stats.year) mean := fmt.Sprintf("%0.1f", stats.mean) stddev := fmt.Sprintf("%0.1f", stats.stddev) err = csvw.Write([]string{name, year, mean, stddev, stats.training}) if err != nil { log.Fatalf("Failed to write record %s to csv: %v\n", name, err) } } csvw.Flush() }