diff options
Diffstat (limited to 'binarize/sauvola.go')
-rw-r--r-- | binarize/sauvola.go | 87 |
1 files changed, 25 insertions, 62 deletions
diff --git a/binarize/sauvola.go b/binarize/sauvola.go index f1d0512..bc311ad 100644 --- a/binarize/sauvola.go +++ b/binarize/sauvola.go @@ -3,81 +3,44 @@ package main import ( "image" "image/color" - "math" ) -func mean(i []int) float64 { - sum := 0 - for _, n := range i { - sum += n - } - return float64(sum) / float64(len(i)) -} - -// TODO: is there a prettier way of doing this than float64() all over the place? -func stddev(i []int) float64 { - m := mean(i) - - var sum float64 - for _, n := range i { - sum += (float64(n) - m) * (float64(n) - m) - } - variance := float64(sum) / float64(len(i) - 1) - return math.Sqrt(variance) -} - -func meanstddev(i []int) (float64, float64) { - m := mean(i) - - var sum float64 - for _, n := range i { - sum += (float64(n) - m) * (float64(n) - m) - } - variance := float64(sum) / float64(len(i) - 1) - return m, math.Sqrt(variance) -} - -// gets the pixel values surrounding a point in the image -func surrounding(img *image.Gray, x int, y int, size int) []int { +// Implements Sauvola's algorithm for text binarization, see paper +// "Adaptive document image binarization" (2000) +func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { b := img.Bounds() + new := image.NewGray(b) - miny := y - size/2 - if miny < b.Min.Y { - miny = b.Min.Y - } - minx := x - size/2 - if minx < b.Min.X { - minx = b.Min.X - } - maxy := y + size/2 - if maxy > b.Max.Y { - maxy = b.Max.Y - } - maxx := x + size/2 - if maxx > b.Max.X { - maxx = b.Max.X - } - - var s []int - for yi := miny; yi < maxy; yi++ { - for xi := minx; xi < maxx; xi++ { - s = append(s, int(img.GrayAt(xi, yi).Y)) + for y := b.Min.Y; y < b.Max.Y; y++ { + for x := b.Min.X; x < b.Max.X; x++ { + window := surrounding(img, x, y, windowsize) + m, dev := meanstddev(window) + threshold := m * (1 + ksize * ((dev / 128) - 1)) + if img.GrayAt(x, y).Y < uint8(threshold) { + new.SetGray(x, y, color.Gray{0}) + } else { + new.SetGray(x, y, color.Gray{255}) + } } } - return s + + return new } -// TODO: parallelize -// TODO: switch to using integral images to make faster; see paper -// "Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images" -func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { +// Implements Sauvola's algorithm using Integral Images, see paper +// "Effcient Implementation of Local Adaptive Thresholding Techniques Using Integral Images" +// and +// https://stackoverflow.com/questions/13110733/computing-image-integral +func IntegralSauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { b := img.Bounds() new := image.NewGray(b) + integral := integralimg(img) + integralsq := integralimgsq(img) + for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { - window := surrounding(img, x, y, windowsize) - m, dev := meanstddev(window) + m, dev := integralmeanstddev(integral, integralsq, x, y, windowsize) threshold := m * (1 + ksize * ((dev / 128) - 1)) if img.GrayAt(x, y).Y < uint8(threshold) { new.SetGray(x, y, color.Gray{0}) |