summaryrefslogtreecommitdiff
path: root/binarize/sauvola.go
diff options
context:
space:
mode:
Diffstat (limited to 'binarize/sauvola.go')
-rw-r--r--binarize/sauvola.go87
1 files changed, 25 insertions, 62 deletions
diff --git a/binarize/sauvola.go b/binarize/sauvola.go
index f1d0512..bc311ad 100644
--- a/binarize/sauvola.go
+++ b/binarize/sauvola.go
@@ -3,81 +3,44 @@ package main
import (
"image"
"image/color"
- "math"
)
-func mean(i []int) float64 {
- sum := 0
- for _, n := range i {
- sum += n
- }
- return float64(sum) / float64(len(i))
-}
-
-// TODO: is there a prettier way of doing this than float64() all over the place?
-func stddev(i []int) float64 {
- m := mean(i)
-
- var sum float64
- for _, n := range i {
- sum += (float64(n) - m) * (float64(n) - m)
- }
- variance := float64(sum) / float64(len(i) - 1)
- return math.Sqrt(variance)
-}
-
-func meanstddev(i []int) (float64, float64) {
- m := mean(i)
-
- var sum float64
- for _, n := range i {
- sum += (float64(n) - m) * (float64(n) - m)
- }
- variance := float64(sum) / float64(len(i) - 1)
- return m, math.Sqrt(variance)
-}
-
-// gets the pixel values surrounding a point in the image
-func surrounding(img *image.Gray, x int, y int, size int) []int {
+// Implements Sauvola's algorithm for text binarization, see paper
+// "Adaptive document image binarization" (2000)
+func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray {
b := img.Bounds()
+ new := image.NewGray(b)
- miny := y - size/2
- if miny < b.Min.Y {
- miny = b.Min.Y
- }
- minx := x - size/2
- if minx < b.Min.X {
- minx = b.Min.X
- }
- maxy := y + size/2
- if maxy > b.Max.Y {
- maxy = b.Max.Y
- }
- maxx := x + size/2
- if maxx > b.Max.X {
- maxx = b.Max.X
- }
-
- var s []int
- for yi := miny; yi < maxy; yi++ {
- for xi := minx; xi < maxx; xi++ {
- s = append(s, int(img.GrayAt(xi, yi).Y))
+ for y := b.Min.Y; y < b.Max.Y; y++ {
+ for x := b.Min.X; x < b.Max.X; x++ {
+ window := surrounding(img, x, y, windowsize)
+ m, dev := meanstddev(window)
+ threshold := m * (1 + ksize * ((dev / 128) - 1))
+ if img.GrayAt(x, y).Y < uint8(threshold) {
+ new.SetGray(x, y, color.Gray{0})
+ } else {
+ new.SetGray(x, y, color.Gray{255})
+ }
}
}
- return s
+
+ return new
}
-// TODO: parallelize
-// TODO: switch to using integral images to make faster; see paper
-// "Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images"
-func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray {
+// Implements Sauvola's algorithm using Integral Images, see paper
+// "Effcient Implementation of Local Adaptive Thresholding Techniques Using Integral Images"
+// and
+// https://stackoverflow.com/questions/13110733/computing-image-integral
+func IntegralSauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray {
b := img.Bounds()
new := image.NewGray(b)
+ integral := integralimg(img)
+ integralsq := integralimgsq(img)
+
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
- window := surrounding(img, x, y, windowsize)
- m, dev := meanstddev(window)
+ m, dev := integralmeanstddev(integral, integralsq, x, y, windowsize)
threshold := m * (1 + ksize * ((dev / 128) - 1))
if img.GrayAt(x, y).Y < uint8(threshold) {
new.SetGray(x, y, color.Gray{0})