1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// Copyright 2019 Nick White.
// Use of this source code is governed by the GPLv3
// license that can be found in the LICENSE file.
package preproc
// TODO: optionally return the edges chosen
import (
"errors"
"fmt"
"image"
"image/color"
"image/draw"
_ "image/jpeg"
"image/png"
"os"
"rescribe.xyz/integral"
)
// ProportionSlice returns the proportion of black pixels in a
// vertical slice of an image starting at x, width pixels wide.
func ProportionSlice(i SummableImage, x int, width int) float64 {
r := image.Rect(x, 0, x + width, i.Bounds().Dy())
in := r.Intersect(i.Bounds())
area := in.Dx() * in.Dy()
// 1 << 16 - 1 as we're using Gray16, so 1 << 16 - 1 = white
numwhite := float64(i.Sum(in)) / float64(1 << 16 - 1)
return float64(area) / float64(numwhite) - 1
}
// findbestedge goes through every vertical line from x to x+w to
// find the one with the lowest proportion of black pixels.
// if there are multiple lines with the same proportion (e.g. zero),
// choose the middle one.
func findbestedge(img SummableImage, x int, w int) int {
var best float64
var bestxs []int
if w == 1 {
return x
}
best = 100
right := x + w
for ; x < right; x++ {
prop := ProportionSlice(img, x, 1)
if prop < best {
bestxs = make([]int, 0)
best = prop
}
if prop == best {
bestxs = append(bestxs, x)
}
}
middlex := bestxs[len(bestxs)/2]
return middlex
}
// findedges finds the edges of the main content, by moving a wsize width vertical slice
// from near the middle of the image to the left and right, stopping when it reaches
// a point at which there is a lower proportion of black pixels than thresh.
func findedges(img SummableImage, wsize int, thresh float64) (int, int) {
maxx := img.Bounds().Dx() - 1
var lowedge, highedge int = 0, maxx
// don't start at the middle, as this will fail for 2 column layouts,
// start 10% left or right of the middle
notcentre := maxx / 10
for x := maxx/2 + notcentre; x < maxx-wsize; x++ {
if ProportionSlice(img, x, wsize) <= thresh {
highedge = findbestedge(img, x, wsize)
break
}
}
for x := maxx/2 - notcentre; x > 0; x-- {
if ProportionSlice(img, x, wsize) <= thresh {
lowedge = findbestedge(img, x, wsize)
break
}
}
return lowedge, highedge
}
// findedgesOutin finds the edges of the main content as findedges does,
// but working from the outside of the image inwards, rather than from the
// middle outwards.
// TODO: test what difference this makes
func findedgesOutin(img SummableImage, wsize int, thresh float64) (int, int) {
maxx := img.Bounds().Dx() - 1
var lowedge, highedge int = 0, maxx
for x := maxx-wsize; x > 0; x-- {
if ProportionSlice(img, x, wsize) > thresh {
highedge = findbestedge(img, x, wsize)
break
}
}
for x := 0; x < maxx-wsize; x++ {
if ProportionSlice(img, x, wsize) > thresh {
lowedge = findbestedge(img, x, wsize)
break
}
}
return lowedge, highedge
}
// wipesides fills the sections of image not within the boundaries
// of lowedge and highedge with white
func wipesides(img *image.Gray, lowedge int, highedge int) *image.Gray {
b := img.Bounds()
new := image.NewGray(b)
// set left edge white
for x := b.Min.X; x < lowedge; x++ {
for y := b.Min.Y; y < b.Max.Y; y++ {
new.SetGray(x, y, color.Gray{255})
}
}
// copy middle
for x := lowedge; x < highedge; x++ {
for y := b.Min.Y; y < b.Max.Y; y++ {
new.SetGray(x, y, img.GrayAt(x, y))
}
}
// set right edge white
for x := highedge; x < b.Max.X; x++ {
for y := b.Min.Y; y < b.Max.Y; y++ {
new.SetGray(x, y, color.Gray{255})
}
}
return new
}
// toonarrow checks whether the area between lowedge and highedge is
// less than min % of the total image width
func toonarrow(img *image.Gray, lowedge int, highedge int, min int) bool {
b := img.Bounds()
imgw := b.Max.X - b.Min.X
wipew := highedge - lowedge
if float64(wipew)/float64(imgw)*100 < float64(min) {
return true
}
return false
}
// sideways flips an image sideways
func sideways(img image.Image) *image.Gray {
b := img.Bounds()
newb := image.Rect(b.Min.Y, b.Min.X, b.Max.Y, b.Max.X)
new := image.NewGray(newb)
for x := b.Min.X; x < b.Max.X; x++ {
for y := b.Min.Y; y < b.Max.Y; y++ {
c := img.At(x, y)
new.SetGray(y, x, color.GrayModel.Convert(c).(color.Gray))
}
}
return new
}
// Wipe fills the sections of image which fall outside the content
// area with white, providing the content area is above min %
func Wipe(img *image.Gray, wsize int, thresh float64, min int) *image.Gray {
b := img.Bounds()
intImg := integral.NewImage(b)
draw.Draw(intImg, b, img, b.Min, draw.Src)
lowedge, highedge := findedges(*intImg, wsize, thresh)
if toonarrow(img, lowedge, highedge, min) {
return img
}
return wipesides(img, lowedge, highedge)
}
// VWipe fills the sections of image which fall outside the vertical
// content area with white, providing the content area is above min %
func VWipe(img *image.Gray, wsize int, thresh float64, min int) *image.Gray {
rotimg := sideways(img)
b := rotimg.Bounds()
intImg := integral.NewImage(b)
draw.Draw(intImg, b, rotimg, b.Min, draw.Src)
// TODO: test whether there are any places where Outin makes a real difference
lowedge, highedge:= findedgesOutin(*intImg, wsize, thresh)
if toonarrow(img, lowedge, highedge, min) {
return img
}
wiped := wipesides(rotimg, lowedge, highedge)
return sideways(wiped)
}
// WipeFile wipes an image file, filling the sections of the image
// which fall outside the content area with white, providing the
// content area is above min %.
// inPath: path of the input image.
// outPath: path to save the output image.
// hwsize: window size (width) for horizontal wipe algorithm.
// hthresh: threshold for horizontal wipe algorithm.
// hmin: minimum % of content area width to consider valid.
// vwsize: window size (height) for vertical wipe algorithm.
// vthresh: threshold for vertical wipe algorithm.
// vmin: minimum % of content area height to consider valid.
func WipeFile(inPath string, outPath string, hwsize int, hthresh float64, hmin int, vwsize int, vthresh float64, vmin int) error {
f, err := os.Open(inPath)
if err != nil {
return errors.New(fmt.Sprintf("Could not open file %s: %v", inPath, err))
}
defer f.Close()
img, _, err := image.Decode(f)
if err != nil {
return errors.New(fmt.Sprintf("Could not decode image: %v", err))
}
b := img.Bounds()
gray := image.NewGray(b)
draw.Draw(gray, b, img, b.Min, draw.Src)
vclean := VWipe(gray, vwsize, vthresh, vmin)
clean := Wipe(vclean, hwsize, hthresh, hmin)
f, err = os.Create(outPath)
if err != nil {
return errors.New(fmt.Sprintf("Could not create file %s: %v", outPath, err))
}
defer f.Close()
err = png.Encode(f, clean)
if err != nil {
return errors.New(fmt.Sprintf("Could not encode image: %v", err))
}
return nil
}
|