package binarize import ( "image" "image/color" ) // Implements Sauvola's algorithm for text binarization, see paper // "Adaptive document image binarization" (2000) func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { b := img.Bounds() new := image.NewGray(b) for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { window := surrounding(img, x, y, windowsize) m, dev := meanstddev(window) threshold := m * (1 + ksize * ((dev / 128) - 1)) if img.GrayAt(x, y).Y < uint8(threshold) { new.SetGray(x, y, color.Gray{0}) } else { new.SetGray(x, y, color.Gray{255}) } } } return new } // Implements Sauvola's algorithm using Integral Images, see paper // "Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images" // and // https://stackoverflow.com/questions/13110733/computing-image-integral func IntegralSauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { b := img.Bounds() new := image.NewGray(b) integral := Integralimg(img) integralsq := integralimgsq(img) for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { m, dev := integralmeanstddev(integral, integralsq, x, y, windowsize) threshold := m * (1 + ksize * ((dev / 128) - 1)) if img.GrayAt(x, y).Y < uint8(threshold) { new.SetGray(x, y, color.Gray{0}) } else { new.SetGray(x, y, color.Gray{255}) } } } return new }