diff options
-rw-r--r-- | binarize/binarize.go | 8 | ||||
-rw-r--r-- | binarize/sauvola.go | 91 |
2 files changed, 96 insertions, 3 deletions
diff --git a/binarize/binarize.go b/binarize/binarize.go index f95ee22..fa8a30f 100644 --- a/binarize/binarize.go +++ b/binarize/binarize.go @@ -7,14 +7,15 @@ import ( "os" "github.com/Ernyoke/Imger/imgio" - "github.com/Ernyoke/Imger/threshold" ) func main() { flag.Usage = func() { - fmt.Fprintf(os.Stderr, "Usage: binarize inimg outimg\n") + fmt.Fprintf(os.Stderr, "Usage: binarize [-w num] [-k num] inimg outimg\n") flag.PrintDefaults() } + wsize := flag.Int("w", 31, "Window size for sauvola algorithm") + ksize := flag.Float64("k", 0.5, "K for sauvola algorithm") flag.Parse() if flag.NArg() < 2 { flag.Usage() @@ -26,7 +27,8 @@ func main() { log.Fatalf("Could not read image %s\n", flag.Arg(0)) } - thresh, err := threshold.OtsuThreshold(img, threshold.ThreshBinary) + // TODO: should be able to estimate an appropriate window size based on resolution + thresh := Sauvola(img, *ksize, *wsize) if err != nil { log.Fatal("Error binarising image\n") } diff --git a/binarize/sauvola.go b/binarize/sauvola.go new file mode 100644 index 0000000..f1d0512 --- /dev/null +++ b/binarize/sauvola.go @@ -0,0 +1,91 @@ +package main + +import ( + "image" + "image/color" + "math" +) + +func mean(i []int) float64 { + sum := 0 + for _, n := range i { + sum += n + } + return float64(sum) / float64(len(i)) +} + +// TODO: is there a prettier way of doing this than float64() all over the place? +func stddev(i []int) float64 { + m := mean(i) + + var sum float64 + for _, n := range i { + sum += (float64(n) - m) * (float64(n) - m) + } + variance := float64(sum) / float64(len(i) - 1) + return math.Sqrt(variance) +} + +func meanstddev(i []int) (float64, float64) { + m := mean(i) + + var sum float64 + for _, n := range i { + sum += (float64(n) - m) * (float64(n) - m) + } + variance := float64(sum) / float64(len(i) - 1) + return m, math.Sqrt(variance) +} + +// gets the pixel values surrounding a point in the image +func surrounding(img *image.Gray, x int, y int, size int) []int { + b := img.Bounds() + + miny := y - size/2 + if miny < b.Min.Y { + miny = b.Min.Y + } + minx := x - size/2 + if minx < b.Min.X { + minx = b.Min.X + } + maxy := y + size/2 + if maxy > b.Max.Y { + maxy = b.Max.Y + } + maxx := x + size/2 + if maxx > b.Max.X { + maxx = b.Max.X + } + + var s []int + for yi := miny; yi < maxy; yi++ { + for xi := minx; xi < maxx; xi++ { + s = append(s, int(img.GrayAt(xi, yi).Y)) + } + } + return s +} + +// TODO: parallelize +// TODO: switch to using integral images to make faster; see paper +// "Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images" +func Sauvola(img *image.Gray, ksize float64, windowsize int) *image.Gray { + b := img.Bounds() + new := image.NewGray(b) + + for y := b.Min.Y; y < b.Max.Y; y++ { + for x := b.Min.X; x < b.Max.X; x++ { + window := surrounding(img, x, y, windowsize) + m, dev := meanstddev(window) + threshold := m * (1 + ksize * ((dev / 128) - 1)) + if img.GrayAt(x, y).Y < uint8(threshold) { + new.SetGray(x, y, color.Gray{0}) + } else { + new.SetGray(x, y, color.Gray{255}) + } + } + } + + return new +} |